Gerhard Herzberg, physicist, Nobel laureate
Nobel prize winner Gerhard Herzberg (courtesy National Research Council).
Werner Israel, scientist
Physicist Werner Israel conjectures that black holes can be defined by a few parameters (courtesy University of Alberta/Lotus Studio).

Physics

Physics is the study of matter and radiation, the space-time continuum that contains them, and the forces to which they are subject. Physics may be experimental, observing the behaviour of matter and radiation under various conditions, using increasingly sophisticated instruments; or it may be theoretical, using mathematical tools to construct models, to formulate laws governing observed behaviour and to indicate (on the basis of these models and laws) promising avenues for further experimentation. The terms macroscopic and microscopic (or, more accurately, submicroscopic), and "classical" and "modern," refer to aspects of physics characterized by different scales in the phenomena studied. Macroscopic or classical physics deals with matter in bulk, as solids, liquids or gases.
The closely interrelated fields of mechanics (based on Newton's laws of motion), heat (ie, thermometry and calorimetry), thermodynamics, classical electricity and magnetism (based on discoveries by Coulomb, Ampère, Faraday and Maxwell), and some aspects of statistical physics, lie in the domain of classical physics. Submicroscopic or modern physics studies the detailed structure of matter: atoms, molecules, electrons, nuclei, nucleons and various so-called "elementary particles," many of which are unstable and very short-lived.
The transition from classical to modern physics involved recognition of the existence in nature of a number of fundamental constants, which have since been measured with ever greater precision. Thus the speed of light in a vacuum is now known to 0.004 parts per million (c = 299 792 458 m/s). Other fundamental constants, such as e (the charge of an electron), m (its mass), M (the proton mass) and h (Planck's constant), have all been measured to a precision of a few parts per million. In classical physics, radiation (eg, visible light, radio waves) is treated as continuous waves characterized by a wavelength and a frequency. Modern physics introduced the concept of discrete bundles of energy, called quanta, associated with the waves and, shortly thereafter, discovered that under certain conditions the subatomic units of matter exhibit a wavelike behaviour. To deal with this behaviour a new mode of mathematical description, known now as quantum mechanics, has been developed.
 Finally, the pair of terms basic and applied represents an arbitrary division of physics into 2 broad areas, between which the boundary shifts continually. Michael Faraday's basic studies of the relation between electricity and magnetism have led to the applied field ofELECTRICAL ENGINEERING. The basic studies in nuclear physics by Ernest RUTHERFORD at McGill at the turn of the century eventually resulted in CANDU nuclear power reactors. Basic studies inSPECTROSCOPY, such as those of Canada's Nobel laureate GerhardHERZBERG, underlie lasers, atomic clocks, and the NATIONAL RESEARCH COUNCIL OF CANADA'S daily TIME signal on CBC Radio.

Untuk lebih jelasnya "klik link dibawah ini"